Fire tests are a critical component used in the process of designing a fire safe environment. For example, how do you know the fire protection in a large storage facility for chemical oxidizers is sufficient? How do you test the fire safety of and recommend performance-based criteria for engine compartment and interior materials for the variety of passenger road vehicles? For example, fire modeling predicted that a high density polypropylene product would auto-ignite when exposed to a radiant heat source when, in suitable tests or real fires, the same object melted away from the heat source. Fire tests must be carefully developed and monitored to make sure they correspond to reality. Fire experimentalists are always concerned with real-world fire parameters in the development, execution and application of fire tests and fire test data. Ageing, scaling, calculations, fire modeling and cost all require careful consideration in developing, evaluating and communicating the advantages and limitations of data from laboratory tests with the real world. Where no reliable fire test data exists, evaluation of historical fires and preliminary bench scale test data are often better than no data. But in any case no one should rely unquestioningly on small scale tests.
This presentation (pdf format) will examine the challenges of fire testing and related progress in fire safety science.
Filed under: Magazine |