Fire Resistance in Plastics 2010

Fire Resistance in Plastics 2010 will take place from 7-9 December at the Intercontinental Hotel Duesseldorf, Duesseldorf, Germany. The conference will provide an international forum for all companies involved in flame retardancy and flame retardant plastics to learn about the latest developments influencing the industry. The conference programme will be divided into a number of sessions which will give an overview of flame retardancy, looking at material developments including halogen vs. non halogen, zinc borates, metal hydroxides and brominated flame retardants.  (http://www.eventseye.com/fairs/st0_salons_materiaux-avances.html)

Fire in Vehicles Conference (Sept.29-30,2010,SWEDEN)

FIVE (Fires In Vehicles). The objective of this conference is to exchange knowledge of fires in vehicles, including both road and rail vehicles. In recognition of the fact that many of the fire problems faced by these vehicles are the same, the solutions to them can also be similar.

FIVE will bring together scientists, regulators, test engineers, industry, suppliers, insurance companies and other organisations from the diverse field of transportation to discuss important fire issues. We believe that this exchange of knowledge will significantly enhance economic and safe solutions – sustainable solutions – to problems in the fire area.

FIVE will be a biannual event, the first conference of which will take place September 29 – 30, 2010 in Gothenburg, SWEDEN. Gothenburg has been selected as the opening site for this event as it is the centre of the West Coast Region, the automotive science centre of Sweden.

More information:  http://www.firesinvehicles.com/en/Sidor/default.aspx

Microencapsulation of flame retardants

Innovation Report :

The use of halogenated flame retardants in plastics is steadily declining because they are volatile, pose an environmental risk and are difficult to recycle. Microcapsules, fibers and melamine resin foams represent some of the chief alternatives.

As successfully as the endless variety of plastics have established themselves on the market, these multifaceted materials show another face when it comes to fire. They melt and feed the flames like the petroleum from which they were ultimately produced. As a preventative measure, a variety of flame retardants are added to plastics, yet this introduces a number of problems. Additives often alter the mechanical properties and electrical insulating effect of plastics. Especially brominated and chlorinated additives migrate through the material and can damage metal and electronic components. Moreover, they represent a health risk and interfere with the recycling process. Yet fire safety regulations require the use of flame retardants.

“The microencapsulation of flame retardants is one of three strategies we are currently pursuing,” explains Rafler. “The outer shell of the microscopic capsules is made of nonfusable, flame-resistant melamine resin like that used for frying pan handles or power plugs. The flame retardants remain enclosed in the capsules and are only released in the event of fire.” Even substances incompatible with the base plastic material can be used if encapsulated. Nitrogen, carbon dioxide and compounds designed to produce extinguishing gases in reaction to heat are some examples. Gas-filled microcapsules are pressure-resistant and withstand plastics processing procedures such as extrusion, granulation and injection molding without rupturing.

The IAP research team has developed two further concepts to replace halogenated flame retardants. They manufacture fiber-reinforced polymers made of melt-spun melamine fibers. Such composite materials are easier to process and recycle than those reinforced with glass fiber. Finally, they manufacture high tenacity melamine foams that begin to slowly decompose at temperatures above 360 °C.

“Smart” Fire-Resistant Polymers

Science Daily : Research into new polymers targeted for aircraft safety shows that they are much more fire-resistant than current materials and, when heated, actually produce water vapor and leave a nearly nonflammable residue.

The new findings, reported here today at a national meeting of the American Chemical Society, the world’s largest scientific society, are expected to help prevent some of the deaths in “survivable” airplane accidents, 40 percent of which are due to fires.

The polymer research conducted at the University of Massachusetts Amherst and the Federal Aviation Administration is part of an ongoing series of studies into new fire-resistant polymers, sponsored by a government and industry consortium created to improve aircraft safety.

“If you look around in an aircraft, most of what you see is not metal, it’s polymeric the walls, the bins, the seats, the windows, just about everything except the chair supports,” says University of Massachusetts Professor Phillip Westmoreland, lead author of the study. Although polymers don’t actually burn, Westmoreland points out, they decompose from heat and many of them produce gases that burn.

“Forty percent of fatalities in impact-survivable accidents are due to fire,” adds co-researcher Richard Lyon, FAA program manager for fire research and fire safety in Atlantic City, N.J., referring to statistics for large transport aircraft operated by U.S. carriers. About half of the total deaths in passenger airline accidents, according to the FAA, occur in non-survivable crashes, such as might happen when a plane hits a mountain. The other 50 percent of the deaths occur in what are generally considered impact-survivable accidents, such as runway collisions causing ignition of spilled fuel.

Two new experimental techniques, requiring only extremely small amounts of material (milligrams), were developed by the researchers to measure the combustibility of the new polymer. Using the techniques to evaluate the polymer, known as PHA (polyhydroxyamide), they found it decomposed very little in contrast to other polymers. The PHA that did decompose was converted to water vapor and another nearly nonflammable polymer. “Quantum molecular modeling established how the decomposition gave water and a different type of solid polymer, PBO (polybenzoxazole), that is extremely fire-resistant,” notes Westmoreland.

So, why not just start with PBO instead of PHA? “You can’t start with PBO because it is too hard to make into useful products, such as fabrics or panels,” says Westmoreland. “PHA is a ‘smart’ fire-safe material. It can be made and processed by mild ‘green chemistry’ processes, yet when subjected to fire dangers, it converts into strong, stable PBO.”

PHA has potential applications beyond aircraft, according to Westmoreland. “The Army Materiel Division in Natick, Mass., has a crash three- year program to come up with more fire-safe clothing for military uniforms,” he notes. The new testing techniques also are useful for other new materials, he says, because it makes it possible to test very small samples efficiently, thereby reducing the need to spend time and money producing large amounts of the new material for analysis.

The key to this study’s success, Westmoreland points out, is the integrated approach of polymer synthesis, flammability testing and molecular modeling.

%d bloggers like this: